Microstructure Characterization and Bulk Properties of Disordered Two-Phase Media
نویسنده
چکیده
A general formalism is developed to statistically characterize the microstructure of porous and other composite media composed of inclusions (particles) distributed throughout a matrix phase (which, in the case of porous media, is the void phase). This is accomplished by introducing a new and general n-point distribution function HA and by deriving two series representations of it in terms of the probability density functions that characterize the configuration of particles; quantities that, in principle, are known for the ensemble under consideration. In the special case of an equilibrium ensemble, these two equivalent but topologically different series for the H, are generalizations of the Kirkwood Salsburg and Mayer hierarchies of liquid-state theory for a special mixture of particles described in the text. This methodology provides a means of calculating any class of correlation functions that have arisen in rigorous bounds on transport properties (e.g., conductivity and fluid permeability) and mechanical properties (e.g., elastic moduli) for nontrivial models of two-phase disordered media. Asymptotic and bounding properties of the general function H,, are described. To illustrate the use of the formalism, some new results are presented for the H, and it is shown how such information is employed to compute bounds on bulk properties for models of fully penetrable (i.e., randomly centered) spheres, totally impenetrable spheres, and spheres distributed with arbitrary degree of impenetrability. Among other results, bounds are computed on the fluid permeability, for assemblages of impenetrable as well as penetrable spheres, with heretofore unattained accuracy.
منابع مشابه
Investigating the effects of Magnesia addition on properties, phase transformation and microstructure of gelcasted Zirconia bodies
Magnesia Partially Stabilized Zirconia (Mg-PSZ) is the best material for casting nozzles used in steelmaking industry due to high melting point, high mechanical strength, high thermal shock resistance, high toughness, chemical stability and neutrality, which these nozzles should be fabricated using cold isostatic pressing (CIP) method, however wet processing methods such as gelcasting can lead ...
متن کاملMICROSTRUCTURE, HARDNESS AND SURFACE ROUGHNESS CHARACTERIZATION OF EBM FABRICATED Ti-6Al-4V SAMPLES
Electron beam melting (EBM) is among the modern additive manufacturing processes whereby metal powders are selectively melted to produce very complicated components with superior mechanical properties. In this study, microstructure, hardness, and surface roughness of EBM fabricated Ti6Al4V samples were characterized. The results showed that the microstructure consisted of epitaxially-grown prim...
متن کاملGrain refinement, Microstructural characterization, and tensile properties of die-cast AZ91 alloy via Lead and Tin additions
Effects of different amounts of lead (Pb) and tin (Sn) on microstructure and tensile properties of the AZ91 alloy were studied. The results presented that the microstructure of AZ91 alloy is consisted the α-Mg phase and semi-continuous network of β-Mg17Al12 intermetallics. For the as-cast AZ91 alloy, the average grain siz and the β phase volume fraction were 96.2 µm and of 25.3%, respectively. ...
متن کاملCHARACTERIZATION OF CO-FE MAGNETIC FILMS FABRICATED BY GALVANO-STATIC ELECTRODEPOSITION
In this research, nanocrystalline Co-Fe coatings were electrodeposited on copper substrate. The influence of current density on different properties of the films at two pH levels was investigated. All the coatings showed nodular structure with rougher morphology at higher current densities. Due to anomalous deposition at higher current density, the amount of iron content increased and reached i...
متن کاملEffect of Heat Treatment on Microstructure, Magnetic and Mechanical Properties of HSLA-100
In this study, the effects of various heat treatments on microstructure, mechanical and magnetic properties of HSLA-100 steel were evaluated. The heat treatments consisted of austenitizing at 900°C for 60 minutes, then quenching by different cooling rates via furnace, air, oil and water; and quenched specimens were aged at 600°C for one hour. Optical and field emission scanning electron m...
متن کامل